Ucale

Sum of sines / cosine in terms of products

Values of  sin(A+B) and cos(A+B) in terms of their product is given by

  1. \displaystyle \sin { A } +\sin { B } =2\sin { \left( \frac { A+B }{ 2 } \right) } \cos { \left( \frac { A-B }{ 2 } \right) }
  2. \displaystyle \sin { A } -\sin { B } =2\cos { \left( \frac { A+B }{ 2 } \right) } \sin { \left( \frac { A-B }{ 2 } \right) }
  3. \displaystyle \cos { A } +\cos { B } =2\cos { \left( \frac { A-B }{ 2 } \right) } \cos { \left( \frac { A-B }{ 2 } \right) }
  4. \displaystyle \cos { A } -\cos { B } =2\cos { \left( \frac { A+B }{ 2 } \right) } \cos { \left( \frac { B-A }{ 2 } \right) }
  5. \displaystyle \tan { A } +\tan { B } =\frac { \sin { \left( A+B \right) } }{ \cos { A } \cos { B } } \quad where\quad A,B\neq n\pi +\frac { \pi }{ 2 }
  6. \displaystyle \tan { A } -\tan { B } =\frac { \sin { \left( A-B \right) } }{ \cos { A } \cos { B } } \quad where\quad A,B\neq n\pi +\frac { \pi }{ 2 }
  7. \displaystyle \cot { A } +\cot { B } =\frac { \sin { \left( A+B \right) } }{ \sin { A } \sin { B } } \quad where\quad A,B\neq n\pi \quad n=z
  8. \displaystyle \cot { A } -\cot { B } =\frac { \sin { \left( B-A \right) } }{ \sin { A } \sin { B } } \quad where\quad A,B\neq n\pi \quad n=z

 

Conversely

  1. 2 sin A cos B = sin (A+ B) + sin (A – B)
  2. 2 cos A sin B = sin (A + B) – sin (A – B)
  3. 2 cos A cos B = cos (A + B) + cos (A – B)
  4. 2 sin A sin B = cos (A – B) – cos (A + B)
February 22, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.
Create a free account
By clicking Sign up I agree with the Ucale's Terms and Privacy Policy
OR

Learn to Think

top

Setup Menus in Admin Panel