Ucale

# Sum of sines / cosine in terms of products

Values ofÂ  sin(A+B) and cos(A+B) in terms of their product is given by

1. $\displaystyle \sin { A } +\sin { B } =2\sin { \left( \frac { A+B }{ 2 } \right) } \cos { \left( \frac { A-B }{ 2 } \right) }$
2. $\displaystyle \sin { A } -\sin { B } =2\cos { \left( \frac { A+B }{ 2 } \right) } \sin { \left( \frac { A-B }{ 2 } \right) }$
3. $\displaystyle \cos { A } +\cos { B } =2\cos { \left( \frac { A-B }{ 2 } \right) } \cos { \left( \frac { A-B }{ 2 } \right) }$
4. $\displaystyle \cos { A } -\cos { B } =2\cos { \left( \frac { A+B }{ 2 } \right) } \cos { \left( \frac { B-A }{ 2 } \right) }$
5. $\displaystyle \tan { A } +\tan { B } =\frac { \sin { \left( A+B \right) } }{ \cos { A } \cos { B } } \quad where\quad A,B\neq n\pi +\frac { \pi }{ 2 }$
6. $\displaystyle \tan { A } -\tan { B } =\frac { \sin { \left( A-B \right) } }{ \cos { A } \cos { B } } \quad where\quad A,B\neq n\pi +\frac { \pi }{ 2 }$
7. $\displaystyle \cot { A } +\cot { B } =\frac { \sin { \left( A+B \right) } }{ \sin { A } \sin { B } } \quad where\quad A,B\neq n\pi \quad n=z$
8. $\displaystyle \cot { A } -\cot { B } =\frac { \sin { \left( B-A \right) } }{ \sin { A } \sin { B } } \quad where\quad A,B\neq n\pi \quad n=z$

Conversely

1. 2 sin A cos B = sin (A+ B) + sin (A – B)
2. 2 cos A sin B = sin (A + B) – sin (A – B)
3. 2 cos A cos B = cos (A + B) + cos (A – B)
4. 2 sin A sin B = cos (A – B) – cos (A + B)
February 22, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.