Ucale

# Solving Algebraic Limits (Form 1)

When youâ€™re given a complex rational function, you use the fourth and final algebraic limit-finding technique. The technique of plugging fails, because you end up with a 0 in one of the denominators.

$\displaystyle If\quad n\quad \epsilon \quad Q\quad then\quad \lim _{ x\rightarrow a }{ \frac { { x }^{ n }-{ a }^{ n } }{ x-a } } \\ =\lim _{ x\rightarrow { a }^{ + } }{ \frac { { x }^{ n }-{ a }^{ n } }{ x-a } } \qquad \left[ \because \lim _{ x\longrightarrow a }{ f\left( x \right) } exists\therefore \lim _{ x\longrightarrow a }{ f\left( x \right) } =\lim _{ x\rightarrow { a }^{ + } }{ f(x) } \right] \\ =\lim _{ h\longrightarrow 0 }{ \frac { \left( a+h \right) -{ a }^{ n } }{ a+h-a } } \\ =\lim _{ h\longrightarrow 0 }{ \frac { { a }^{ n }\left\{ \left( 1+\frac { h }{ a } \right) -1 \right\} }{ h } } \\ ={ a }^{ n }\lim _{ h\longrightarrow 0 }{ \frac { \left\{ 1+n.\frac { h }{ a } +\frac { n\left( n-1 \right) }{ 2! } \frac { { h }^{ 2 } }{ { a }^{ 2 } } +....-1 \right\} }{ h } } \quad \left[ Using{ \left( 1+x \right) }^{ 2 }=1+nx+\frac { n\left( n-1 \right) }{ 2! } { x }^{ 2 }+....... \right] \\ ={ a }^{ n }\lim _{ h\longrightarrow 0 }{ \left( \frac { n }{ a } +\frac { n\left( n-1 \right) }{ 2! } \frac { h }{ { a }^{ 2 } } +.... \right) } \\ ={ a }^{ n }.\frac { n }{ a } =n{ a }^{ n-1 }\\ \therefore \lim _{ x\rightarrow a }{ \frac { { x }^{ n }-{ a }^{ n } }{ x-a } } =n{ a }^{ n-1 }$

### For Example

$\displaystyle =\lim _{ x\longrightarrow \infty }{ \frac { { x }^{ 2 }+5 }{ { x }^{ 2 }+4x+3 } } \\ Dividing\quad { N }^{ r }\quad and\quad { D }^{ r }\quad by\quad { x }^{ 2 }\\ =\lim _{ x\longrightarrow \infty }{ \frac { 1+\frac { 5 }{ { x }^{ 2 } } }{ 1+\frac { 4 }{ x } +\frac { 3 }{ { x }^{ 2 } } } } \\ =\frac { 1+0 }{ 1+0+0 } \\ \left( because\quad \frac { K }{ x } \longrightarrow 0,when\quad x\longrightarrow \infty \quad where\quad K\quad is\quad any\quad constant \right) [\\ =1$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.