Ucale

# Properties of Definite Integrals

In this section, we study some fundamental properties of definite integrals which are very useful in evaluating integrals

#### Property I

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ b }{ f\left( t \right) } dt$

i.e. integration is independent of change of variable.

ProofÂ Â  LetÂ $\displaystyle \phi \left( x \right)Â$ be a primitive of f(x) .Then

$\displaystyle \frac { d }{ dx } \left\{ \phi \left( x \right) \right\} =f\left( x \right) \\ \Rightarrow \frac { d }{ dx } \left\{ \phi \left( t \right) \right\} =f\left( t \right)$

$\displaystyle Hence\int _{ a }^{ b }{ f\left( x \right) } dx={ \left[ \phi \left( x \right) \right] }_{ a }^{ b }=\phi \left( b \right) -\phi \left( a \right) \qquad .....\left( i \right) \\ and\quad \int _{ a }^{ b }{ f\left( t \right) } dt={ \left[ \phi \left( t \right) \right] }_{ a }^{ b }=\phi \left( b \right) -\phi \left( a \right) \qquad .....\left( ii \right) Â$

From (i) and (ii), we have

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ b }{ f\left( t \right) } dt$

#### Property II

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=-\int _{ a }^{ b }{ f\left( x \right) } dx$

i.e., if the limits of a definite integral are interchanged then its value changes by minus sign only.

ProofÂ Â  LetÂ $\displaystyle \phi \left( x \right)Â$ be a primitive of f(x) .Then

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\phi \left( b \right) -\phi \left( a \right) \\ and\quad -\int _{ b }^{ a }{ f\left( x \right) } =-\left[ \phi \left( b \right) -\phi \left( a \right) \right] \\ =\phi \left( b \right) -\phi \left( a \right) \\ \therefore \int _{ a }^{ b }{ f\left( x \right) } dx=-\int _{ b }^{ a }{ f\left( x \right) } dx$

#### Property III

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ c }{ f\left( x \right) } dx+\int _{ c }^{ b }{ f\left( x \right) } dx\quad where\quad a

ProofÂ Â  LetÂ $\displaystyle \phi \left( x \right)Â$ be a primitive of f(x) .Then

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\phi \left( b \right) -\phi \left( a \right) ....\left( i \right) \\ and\quad \int _{ a }^{ c }{ f\left( x \right) } dx+\int _{ c }^{ b }{ f\left( x \right) } dx=\left[ \phi \left( c \right) -\phi \left( a \right) \right] +\left[ \phi \left( b \right) -\phi \left( c \right) \right] =\phi \left( b \right) -\phi \left( a \right) ....\left( ii \right) Â$

From (i) and (ii), we have

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ c }{ f\left( x \right) } dx+\int _{ c }^{ b }{ f\left( x \right) } dx$

#### Generalization

The above property can be generalized into following form

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ { c }_{ 1 } }{ f\left( x \right) } dx+\int _{ a }^{ { c }_{ 2 } }{ f\left( x \right) } dx+......\int _{ c }^{ b }{ f\left( x \right) } dx\\ where\quad a<{ c }_{ 1 }<{ c }_{ 2 }<{ c }_{ 3 }....{ c }_{ n-1 }<{ c }_{ n }

#### Property IV

$\displaystyle \int _{ 0 }^{ a }{ f\left( x \right) } dx=\int _{ 0 }^{ a }{ f\left( a-x \right) } dx$

ProofÂ Â  On RHS put a-x=t, so that dx=-dt. Also when x=0, t=a and when x=a , t=0

$\displaystyle \therefore \int _{ 0 }^{ a }{ f\left( a-x \right) } dx=\int _{ a }^{ 0 }{ f\left( t \right) } \left( -dt \right) =\int _{ a }^{ 0 }{ f\left( t \right) } dt=\int _{ 0 }^{ a }{ f\left( t \right) } dt\qquad \left[ by\quad prop(ii) \right] \\ =\int _{ 0 }^{ a }{ f\left( x \right) } \qquad \left[ by\quad prop(i) \right] Â$

NOTEÂ  This property is useful to calculate a definite integral without first finding corresponding indefinite integrals which may be difficult or sometime even possible to find.

#### Property V

$\displaystyle \int _{ -a }^{ a }{ f\left( x \right) } dx\begin{matrix} =2\int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( x \right) is\quad an\quad even\quad function \\ =0,\quad if\quad f\left( x \right) is\quad an\quad odd\quad function \end{matrix}$

ProofÂ Â  From property III, we getÂ $\displaystyle \int _{ -a }^{ a }{ f\left( x \right) } dx=\int _{ -a }^{ 0 }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( x \right) } dx\qquad ......\left( i \right) Â$

$\displaystyle Now,\quad \int _{ -a }^{ 0 }{ f\left( x \right) } dx=\int _{ a }^{ 0 }{ f\left( -t \right) } \left( -dt \right) \quad where\quad t=-x\\ =-\int _{ a }^{ 0 }{ f\left( -t \right) } \left( -dt \right) =\int _{ 0 }^{ a }{ f\left( -t \right) } \left( -dt \right) \qquad \left[ by\quad Prop.II \right] \\ =\int _{ 0 }^{ a }{ f\left( -x \right) } dx\qquad \left[ by\quad Prop.I \right] Â$

$\displaystyle =\begin{matrix} \int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( x \right) \quad is\quad an\quad even\quad function \\ -\int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( x \right) \quad is\quad an\quad odd\quad function \end{matrix}\qquad ......\left( ii \right)Â$

Thus when f(x) is an even function

$\displaystyle \left( i \right) \quad and\quad \left( ii \right) \Rightarrow \int _{ -a }^{ a }{ f\left( x \right) } dx=\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( x \right) } dx\\ =2\int _{ 0 }^{ a }{ f\left( x \right) } dx$

and, when f(x) is an odd function

$\displaystyle \left( i \right) \quad and\quad \left( ii \right) \Rightarrow \int _{ -a }^{ a }{ f\left( x \right) } dx=-\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( x \right) } dx \\=0$

#### Property VI

$\displaystyle \int _{ 0 }^{ 2a }{ f\left( x \right) } dx\begin{matrix} =2\int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( 2a-x \right) =f\left( x \right) \\ =0,\quad if\quad f\left( 2a-x \right) =-f\left( x \right) \end{matrix}$

ProofÂ Â  From property III, we getÂ $\displaystyle \int _{ 0 }^{ 2a }{ f\left( x \right) } dx=\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ 2a }{ f\left( x \right) } dx\qquad ......\left( i \right) Â$

Consider the integralÂ $\displaystyle \int _{ a }^{ 2a }{ f\left( x \right) } dx$ . Putting x= 2 a -t so, that d x=-d t . Also, when x=a,Â  t=a and when x=2 a , t=0

$\displaystyle \therefore \int _{ 0 }^{ 2a }{ f\left( x \right) } dx\\ =\int _{ a }^{ 0 }{ f\left( 2a-t \right) } \left( -dt \right) \\ =-\int _{ a }^{ 0 }{ f\left( 2a-t \right) } dt\\ =\int _{ 0 }^{ a }{ f\left( 2a-t \right) } dt\qquad \left[ by\quad Prop.II \right] \\ =\int _{ 0 }^{ a }{ f\left( 2a-x \right) } dx\qquad \left[ by\quad Prop.I \right] Â$

$\displaystyle =\begin{matrix} \int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( 2a-x \right) =f\left( x \right) \\ -\int _{ 0 }^{ a }{ f\left( x \right) } dx,\quad if\quad f\left( 2a-x \right) =-f\left( x \right) \end{matrix}\qquad ......\left( ii \right) Â$

Thus, when f(2a-x ) =f(x)

$\displaystyle \left( i \right) \quad and\quad \left( ii \right) \Rightarrow \int _{ 0 }^{ 2a }{ f\left( x \right) } dx\\ =\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( x \right) } dx\\ =2\int _{ 0 }^{ a }{ f\left( x \right) } dx$

and when f(2a -x) = -f(x) when

$\displaystyle\left( i \right) \quad and\quad \left( ii \right) \Rightarrow \int _{ 0 }^{ 2a }{ f\left( x \right) } dx\\ =\int _{ 0 }^{ a }{ f\left( x \right) } dx-\int _{ 0 }^{ a }{ f\left( x \right) } dx\\ =0$

If f(2 a-x) = f(x) then the graph of f(x) is symmetrical about x=a so,

$\displaystyle \int _{ 0 }^{ a }{ f\left( x \right) } dx=\int _{ a }^{ 2a }{ f\left( x \right) } dx$

In caseÂ $\displaystyle f\left( 2a-x \right) =-f\left( x \right) Â$

then graph of f(x) is shown in figure $\displaystyle \int _{ 0 }^{ a }{ f\left( x \right) } dx=\int _{ a }^{ 2a }{ f\left( x \right) } dx$

#### Property VII

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ b }{ f\left( a+b-x \right) } dx$

ProofÂ

Putting x=a+b-t, dx=-dt, when x=a,t=b, when x=b, t=a we get

$\displaystyle \int _{ a }^{ b }{ f\left( x \right) } dx\\ =\int _{ a }^{ b }{ f\left( a+b-t \right) } \left( -dt \right) \\ =-\int _{ a }^{ b }{ f\left( a+b-t \right) } dt\\ =\int _{ a }^{ b }{ f\left( a+b-t \right) } dt\qquad \left[ by\quad Prop.II \right] \\ =\int _{ a }^{ b }{ f\left( a+b-x \right) } dx\qquad \left[ by\quad Prop.I \right] Â$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.