Ucale

# Kinds of Discontinuity

We are now going to look at the two main types of discontinuities that can arise in a function. You should be able to distinguish between each type of discontinuity when a functionÂ fÂ may contain each type of discontinuity.

Discontinuity is of two kinds listed as,

## (A) Discontinuity of 1st kind:

(i) First kind removable discontinuity

(ii) Non-removable discontinuityÂ  or jump discontinuity

### (i) First kind removable discontinuity

IfÂ $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } =\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) } \neq f\left( a \right)$

then f(x) is said to have first kind of removable discontinuity:

Example : Examine the function

$\displaystyle f\left( x \right) =x-1,\quad when\quad x<0\\= \frac { 1 }{ 4 } ,\quad when\quad x=0\\= { x }^{ 2 }-1,\quad when\quad x>1$

Solution:

Graphically,f(x) could be plotted as ,

Which showsÂ $\displaystyle \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =\lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =0,butf\left( 0 \right)=\frac { 1 }{ 4 }$

Thus ,f(x) could be made continuously taking.
$\displaystyle f\left( x \right) =x-1,\quad x\textless 0\\ =-1,\quad x=0\\ ={ x }^{ 2 }-1,\quad x\textgreater 0$
so, we could say f(x) becomes continuous, if
$\displaystyle f\left( x \right) =x-1,\quad x\textless 0\\ =-1,\quad x=0\\ ={ x }^{ 2 }-1,\quad x\textgreater 0$

### (ii) Non-Removable discontinuity:

$\displaystyle If\quad \lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) } \neq \lim _{ x\longrightarrow a }{ f\left( x \right) }$
Then f(x) is said to have First kind non-removable discontinuity.

Example : Show the function,

$\displaystyle f\left( x \right) =\frac { { e }^{ \frac { 1 }{ x } }-1 }{ { e }^{ \frac { 1 }{ x } }+1 } ,\quad when\quad x\neq 0\\ =0,\quad when\quad x=0$
has non-removable discontinuity at x=0

Solution: We have

$\displaystyle f\left( x \right) =\frac { { e }^{ \frac { 1 }{ x } }-1 }{ { e }^{ \frac { 1 }{ x } }+1 } ,\quad when\quad x\neq 0\\ =0,\quad when\quad x=0$

then R.H.L. at x=0, Let x=0+h

$\displaystyle \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =\lim _{ h\longrightarrow 0 }{ f\left( 0+h \right) } =\lim _{ h\longrightarrow 0 }{ \frac { { e }^{ \frac { 1 }{ 0+h } }-1 }{ { e }^{ \frac { 1 }{ 0+h } }+1 } } =\lim _{ h\longrightarrow 0 }{ \frac { { e }^{ \frac { 1 }{ h } }-1 }{ { e }^{ \frac { 1 }{ h } }+1 } } \\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =\lim _{ h\longrightarrow 0 }{ \frac { 1-\frac { 1 }{ { e }^{ \frac { 1 }{ h } } } }{ 1+\frac { 1 }{ { e }^{ \frac { 1 }{ h } } } } } \\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } \frac { 1-0 }{ 1+0 } =1\qquad \left[ as\quad h\longrightarrow 0;\frac { 1 }{ h } \longrightarrow \infty \Rightarrow { e }^{ \frac { 1 }{ h } }\longrightarrow \infty ;\frac { 1 }{ { e }^{ \frac { 1 }{ h } } } \longrightarrow 0 \right] \\ \therefore \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =1$

again, L.H.L. at x=0 , at x=0, Let x=0-h

$\displaystyle \Rightarrow \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =\lim _{ h\longrightarrow 0 }{ f\left( 0-h \right) } =\lim _{ h\longrightarrow 0 }{ \frac { { e }^{ -\frac { 1 }{ h } }-1 }{ { e }^{ -\frac { 1 }{ h } }+1 } } =\frac { 0-1 }{ 0+1 } =-1\\ \therefore \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =-1$\qquad \left[ as\quad h\longrightarrow 0;{ e }^{ -\frac { 1 }{ h } }\longrightarrow 0 \right] \\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } \neq \lim _{ x\longrightarrow { 0 }^{ – } }{ f\left( x \right) } &s=1 \$
Thus,f(x) has non-removable discontinuity.

## (B)Discontinuity of 2nd kind:

If at least one ofÂ $\displaystyle \lim _{ h\longrightarrow 0 }{ f\left( a+h \right) } and\quad \lim _{ h\longrightarrow 0 }{ f\left( a-h \right) }$

is non- existent or infinite then f(x) is said to have discontinuity and 2nd kind at x=a

Example : Show the function,

$\displaystyle f\left( x \right)=\frac { 1 }{ \left| x \right| }$Â  has discontinuity at 2nd kind at x=0

Solution: We have

$\displaystyle f\left( x \right) =\frac { 1 }{ \left| x \right| } =\inftyÂ$

Which shows function has discontinuity of 2nd kind.

Graphically:

Here the graph is broken at x=0 as

$\displaystyle x\longrightarrow 0\Rightarrow f\left( x \right) \longrightarrow \infty$

Here the graph is broken at x=0 asÂ $\displaystyle x\longrightarrow 0\Rightarrow f\left( x \right) \longrightarrow \infty$

Therefore f(x) is discontinuity of 2nd kind.

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.