Ucale

# Integration using Partial fraction

### Type I

When the denominator is expressible as a product of linear factors

$\displaystyle \int { \frac { x-1 }{ \left( x+1 \right) \left( x-2 \right) } } dx$

Solution:

$\displaystyle Let\quad \int { \frac { x-1 }{ \left( x+1 \right) \left( x-2 \right) } } dx=\frac { A }{ \left( x+1 \right) } +\frac { B }{ \left( x-2 \right) } \qquad .......(i)\\ \Rightarrow x-1=A\left( x-2 \right) +B\left( x+1 \right)$

Putting x-2=0 or x=2 in (ii), we get 1=3BÂ $\displaystyle \Rightarrow B=\frac { 1 }{ 3 }Â$

Putting x+1 =0 or x=-1 in (ii), we get -2=-3AÂ $\displaystyle \Rightarrow A=\frac { 2 }{ 3 }Â$

Substituting the values of A and B in (i) , we get

$\displaystyle \frac { x-1 }{ \left( x+1 \right) \left( x-2 \right) } =\frac { 2 }{ 3 } .\frac { 1 }{ x+1 } +\frac { 1 }{ 3 } .\frac { 1 }{ x-2 } \\ So,\quad \int { \frac { x-1 }{ \left( x+1 \right) \left( x-2 \right) } } dx=\frac { 2 }{ 3 } \int { \frac { 1 }{ x+1 } } dx+\frac { 1 }{ 3 } \int { \frac { 1 }{ x-2 } } dx\\ =\frac { 2 }{ 3 } \log { \left| x+1 \right| } +\frac { 1 }{ 3 } \log { \left| x-2 \right| } +c$

### Type II

When denominator contains some repeating linear factors

$\displaystyle \int { \frac { 3x+1 }{ { \left( { x-2 } \right) }^{ 2 }\left( x+2 \right) } } dx$

Solution:

$\displaystyle \frac { 3x+1 }{ { \left( x-2 \right) }^{ 2 }\left( x+2 \right) } =\frac { A }{ \left( x-2 \right) } +\frac { B }{ { \left( x-2 \right) }^{ 2 } } +\frac { C }{ \left( x+2 \right) } \qquad ......\left( i \right) \\ \Rightarrow 3x+1=A\left( x-2 \right) \left( x+2 \right) +B\left( x+2 \right) +C{ \left( x-2 \right) }^{ 2 }\qquad ......\left( ii \right) Â$

Putting x-2=0 i.e. x=2 in (ii), we get 7=4 BÂ $\displaystyle \Rightarrow B=\frac { 7 }{ 4 }Â$

Putting x+2 =0 i.e. x=-2 in (ii) we get -5=16 CÂ $\displaystyle \Rightarrow C=-\frac { 5 }{ 16 } Â$

Comparing coefficients ofÂ $\displaystyle { x }^{ 2 }Â$ on both sides of the identity (ii) we get

$\displaystyle A+C=0\Rightarrow A=-C\Rightarrow A=\frac { 5 }{ 16 } Â$

Substituting the values of A,B and C in (i) we get

$\displaystyle \frac { 3x+1 }{ { \left( x-2 \right) }^{ 2 }\left( x+2 \right) } =\frac { 5 }{ 16 } .\frac { 1 }{ \left( x-2 \right) } +\frac { 7 }{ 4 } \frac { 1 }{ { \left( x-2 \right) }^{ 2 } } -\frac { 5 }{ 16\left( x+2 \right) } \\ So,I=\int { \frac { 3x+1 }{ { \left( x-2 \right) }^{ 2 }\left( x+2 \right) } } dx=\frac { 5 }{ 16 } \int { \frac { 1 }{ \left( x-2 \right) } } dx+\frac { 7 }{ 4 } \int { \frac { 1 }{ { \left( x-2 \right) }^{ 2 } } } dx\frac { 5 }{ 16 } \int { \frac { 1 }{ \left( x+2 \right) } } dx\\ =\frac { 5 }{ 16 } \log { \left| x-2 \right| } -\frac { 7 }{ 4\left( x-2 \right) } -\frac { 5 }{ 16 } \log { \left| x+2 \right| } +c$

### Type III

The denominator contains irreducible quadratic factors

$\displaystyle \int { \frac { x }{ \left( x+2 \right) \left( { x }^{ 2 }+4 \right) } }Â$

Solution:

$\displaystyle Let\quad I=\int { \frac { x }{ \left( x-1 \right) \left( { x }^{ 2 }+4 \right) } } =\frac { A }{ x-1 } +\frac { Bx+C }{ { x }^{ 2 }+4 } \qquad ......\left( i \right) \\ \Rightarrow x=A\left( { x }^{ 2 }+4 \right) +\left( Bx+C \right) \left( x-1 \right) \qquad ......\left( ii \right)Â$

Putting x-1 in (ii), we get 1=5 AÂ  Putting x=0 in (ii), we get 0= 4 A – C

Putting x =-1 in (ii), we get -1 = 5 A + 2 B -2 C

Substituting the values of A , B and C in (i), we obtain

$\displaystyle \frac { x }{ \left( x-1 \right) \left( { x }^{ 2 }+4 \right) } =\frac { 1 }{ 5\left( x-1 \right) } +\frac { -\frac { 1 }{ 5 } x+\frac { 4 }{ 5 } }{ { x }^{ 2 }+4 } Â$

$\displaystyle \Rightarrow \frac { x }{ \left( x-1 \right) \left( { x }^{ 2 }+4 \right) } =\frac { 1 }{ 5\left( x-1 \right) } -\frac { 1 }{ 5 } \frac { \left( x-4 \right) }{ \left( { x }^{ 2 }+4 \right) } Â$

$\displaystyle \int { \frac { x }{ \left( x-1 \right) \left( { x }^{ 2 }+4 \right) } dx } =\frac { 1 }{ 5 } \int { \frac { 1 }{ \left( x-1 \right) } } dx-\frac { 1 }{ 5 } \int { \frac { \left( x-4 \right) }{ \left( { x }^{ 2 }+4 \right) } } dx\\ =\frac { 1 }{ 5 } \int { \frac { 1 }{ \left( x-1 \right) } } dx-\frac { 1 }{ 10 } \int { \frac { 2x }{ \left( { x }^{ 2 }+4 \right) } } dx+\frac { 4 }{ 5 } \int { \frac { 1 }{ \left( { x }^{ 2 }+4 \right) } } dx$

$\displaystyle =\frac { 1 }{ 5 } \log { \left| x-1 \right| } -\frac { 1 }{ 10 } \log { \left| { x }^{ 2 }+4 \right| } +\frac { 4 }{ 5 } \times \frac { 1 }{ 2 } \tan ^{ -1 }{ \left( \frac { x }{ 2 } \right) } +C\\ =\frac { 1 }{ 5 } \log { \left| x-1 \right| } -\frac { 1 }{ 10 } \log { \left| { x }^{ 2 }+4 \right| } +\frac { 2 }{ 5 } \tan ^{ -1 }{ \left( \frac { x }{ 2 } \right) } +C$

### Type IV

If rational function contains only even powers of x in both the numerator and denominator, then to resolve it into partial functions, we proceed as follows:

Step IÂ  Put $\displaystyle { x }^{ 2 }=y$ in the given rational function

Step II Resolve the rational function obtained in step I into partial fractions.

Step III Replace y byÂ $\displaystyle { x }^{ 2 }$

Example

$\displaystyle \int { \frac { { x }^{ 2 } }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+4 \right) } } dx$

Solution:

$\displaystyle Let\quad { x }^{ 2 }=y\quad Then,\quad \frac { { x }^{ 2 } }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+4 \right) } \quad =\quad \frac { y }{ \left( y+1 \right) \left( y+4 \right) }$

$\displaystyle Let\quad \frac { y }{ \left( y+1 \right) \left( y+4 \right) } =\frac { 1 }{ 3\left( y+1 \right) } +\frac { 4 }{ 3\left( y+4 \right) } \qquad ....\left( i \right) \\ \Rightarrow y=A\left( y+4 \right) +B\left( y+1 \right) \qquad ......\left( ii \right) Â$

Putting y=-1 and y=-4 successively in (ii), we getÂ $\displaystyle A=-\frac { 1 }{ 3 } \quad and\quad B=\frac { 4 }{ 3 } Â$

Substituting the values of A and B in (i), we obtain

$\displaystyle \frac { y }{ \left( y+1 \right) \left( y+4 \right) } =-\frac { 1 }{ 3\left( y+1 \right) } +\frac { 4 }{ 3\left( y+4 \right) }Â$

Replacing y byÂ $\displaystyle { x }^{ 2 }$, we obtain

$\displaystyle \frac { { x }^{ 2 } }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+4 \right) } =-\frac { 1 }{ 3\left( { x }^{ 2 }+1 \right) } +\frac { 4 }{ 3\left( { x }^{ 2 }+4 \right) } \\ \therefore \int { \frac { { x }^{ 2 } }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+4 \right) } } dx=-\frac { 1 }{ 3 } \int { \frac { 1 }{ \left( { x }^{ 2 }+1 \right) } } dx+\frac { 4 }{ 3 } \int { \frac { 1 }{ \left( { x }^{ 2 }+4 \right) } } dx$

$\displaystyle =-\frac { 1 }{ 3 } \tan ^{ -1 }{ x } +\frac { 4 }{ 3 } \times \frac { 1 }{ 2 } \tan ^{ -1 }{ \left( \frac { x }{ 2 } \right) } +C\\ =-\frac { 1 }{ 3 } \tan ^{ -1 }{ x } +\frac { 2 }{ 3 } \tan ^{ -1 }{ \left( \frac { x }{ 2 } \right) } +C$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.