Ucale

# Evaluation Of Trigonometric Limits (Form-3)

Generally to evaluate limits involving inverse trigonometric functions we convert the limit in terms of trigonometric functions by replacing the inverse trigonometric function by θ $\displaystyle \left( i \right) \lim _{ x\longrightarrow 0 }{ \frac { \sin ^{ -1 }{ x } }{ x } } =1\\ Let\quad \sin ^{ -1 }{ x } =\theta .\\ Then\quad x=\sin { \theta } \\ Also\quad x\longrightarrow 0\Rightarrow \sin { \theta } \longrightarrow 0\Rightarrow \theta \longrightarrow 0\\ \therefore \lim _{ x\longrightarrow 0 }{ \frac { \sin ^{ -1 }{ x } }{ x } } \\ =\lim _{ x\longrightarrow 0 }{ \frac { \theta }{ \sin { \theta } } } \\ =\lim _{ x\longrightarrow 0 }{ \frac { 1 }{ \frac { \sin { \theta } }{ \theta } } } \\ =\frac { 1 }{ 1 } \\ =1$ $\displaystyle \left( ii \right) \lim _{ x\longrightarrow 0 }{ \frac { \tan ^{ -1 }{ x } }{ x } } =1\\ Let\quad \tan ^{ -1 }{ x } =\theta .\\ Then\quad x=\tan { \theta } \\ Also\quad x\longrightarrow 0\Rightarrow \tan { \theta } \longrightarrow 0\Rightarrow \theta \longrightarrow 0\\ \therefore \lim _{ x\longrightarrow 0 }{ \frac { \tan ^{ -1 }{ x } }{ x } } \\ =\lim _{ x\longrightarrow 0 }{ \frac { \theta }{ \tan { \theta } } } \\ =\lim _{ x\longrightarrow 0 }{ \frac { 1 }{ \frac { \tan { \theta } }{ \theta } } } \\ =\frac { 1 }{ 1 } \\ =1$

### Example $\displaystyle \frac { 1 }{ x } \sin ^{ -1 }{ \left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) } \\ Let\quad x=\tan { \theta } .Then\quad x=0\Rightarrow \tan { \theta } =0\quad \Rightarrow \theta =0\\ \therefore \lim _{ x\longrightarrow 0 }{ \frac { 1 }{ x } \sin ^{ -1 }{ \left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) } } \\ =\lim _{ \theta \longrightarrow 0 }{ \frac { 1 }{ \tan { \theta } } \sin ^{ -1 }{ \left( \frac { 2\tan { \theta } }{ 1+{ tan }^{ 2 }\theta } \right) } } \\ =\lim _{ \theta \longrightarrow 0 }{ \frac { 1 }{ \tan { \theta } } \sin ^{ -1 }{ \left( \sin { 2\theta } \right) } } \\ =\lim _{ \theta \longrightarrow 0 }{ \frac { 2\theta }{ \tan { \theta } } } \\ =2\left( 1 \right) \\ =2$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.   