Ucale

# Evaluation of Definite Integrals by using their properties

In this section we shall see how the properties of definite integrals are useful to evaluate definite integrals

Example 1 $\displaystyle \int _{ -1 }^{ 1 }{ f\left( x \right) } dx,\quad where\quad f\left( x \right)\begin{matrix} =1-2x\quad when\quad x\le 0 \\ =1+2x\quad when\quad x\ge 0 \end{matrix}$

Solution: $\displaystyle we\quad have\quad \int _{ -1 }^{ 1 }{ f\left( x \right) } dx\quad =\int _{ -1 }^{ 0 }{ f\left( x \right) } dx+\int _{ 0 }^{ 1 }{ f\left( x \right) } dx$ $\displaystyle =\int _{ -1 }^{ 0 }{ \left( 1-2x \right) } dx+\int _{ 0 }^{ 1 }{ \left( 1+2x \right) } dx\\ ={ \left[ x-{ x }^{ 2 } \right] }_{ -1 }^{ 0 }+{ \left[ x+{ x }^{ 2 } \right] }_{ 0 }^{ 1 }\\ =\left[ 0-\left( -1-1 \right) \right] +\left[ \left( 1+1 \right) -\left( 0 \right) \right] \\ =4$

Example 2 $\displaystyle \int _{ 0 }^{ 1 }{ \left| 5x-3 \right| } dx$

Solution: $\displaystyle we\quad have\quad \left| 5x-3 \right| \begin{matrix} =-\left( 5x-3 \right) \quad when\quad 5x-3<0\quad i.e.,\quad x<\frac { 3 }{ 5 } \\ =\left( 5x-3 \right) \quad when\quad 5x-3\ge 0\quad i.e.,\quad x\ge \frac { 3 }{ 5 } \end{matrix}$ $\displaystyle \therefore \int _{ 0 }^{ 1 }{ \left| 5x-3 \right| } dx=\int _{ 0 }^{ \frac { 3 }{ 5 } }{ \left| 5x-3 \right| } dx+\int _{ \frac { 3 }{ 5 } }^{ 1 }{ \left| 5x-3 \right| } dx$ $\displaystyle =\int _{ 0 }^{ \frac { 3 }{ 5 } }{ -\left( 5x-3 \right) } dx+\int _{ \frac { 3 }{ 5 } }^{ 1 }{ \left( 5x-3 \right) } dx\\ ={ \left[ 3-\frac { 5{ x }^{ 2 } }{ 2 } \right] }_{ 0 }^{ \frac { 3 }{ 5 } }+{ \left[ \frac { 5{ x }^{ 2 } }{ 2 } -3x \right] }_{ \frac { 3 }{ 5 } }^{ 1 }\\ =\left( \frac { 9 }{ 5 } -\frac { 9 }{ 10 } \right) +\left( -\frac { 1 }{ 2 } +\frac { 9 }{ 10 } \right) \\ =\frac { 13 }{ 10 }$

Example 3

Prove that $\displaystyle \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { x } }{ \sin { x } +\cos { x } } } dx=\frac { \pi }{ 4 }$

Solution: $\displaystyle Let\quad I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { x } }{ \sin { x } +\cos { x } } } dx\qquad .......\left( i \right) \\ Then\quad I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { \left( \frac { \pi }{ 2 } -x \right) } }{ \sin { \left( \frac { \pi }{ 2 } -x \right) } +\cos { \left( \frac { \pi }{ 2 } -x \right) } } } dx\qquad \left[ Using\quad \int _{ 0 }^{ a }{ f\left( x \right) } dx=\int _{ 0 }^{ a }{ f\left( a-x \right) } dx \right] \\ or\quad I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \cos { x } }{ \cos { x } +\sin { x } } } dx\qquad .......\left( ii \right)$ $\displaystyle 2I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { x } }{ \sin { x } +\cos { x } } } dx+\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \cos { x } }{ \cos { x } +\sin { x } } } dx\\ =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { x } +\cos { x } }{ \sin { x } +\cos { x } } } dx\\ =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ 1 } .dx\\ ={ x }_{ 0 }^{ \frac { \pi }{ 2 } }\\ =\frac { \pi }{ 2 } -0\\ I=\frac { \pi }{ 4 } \\ i.e.\quad \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \sin { x } }{ \sin { x } +\cos { x } } } dx=\frac { \pi }{ 4 }$

Example 4

Prove that $\displaystyle \int _{ 0 }^{ 2a }{ f\left( x \right) } dx=\int _{ 0 }^{ 2a }{ f\left( 2a-x \right) } dx$

Solution: $\displaystyle Let\quad I=\int _{ 0 }^{ 2a }{ f\left( x \right) } dx$ Put 2a-x so that -dx=dt or dx=-dt

Now, x=0, t= 2a-0 and x=a , t=2a-a=a $\displaystyle \therefore I=\int _{ 2a }^{ 0 }{ f\left( 2a-t \right) } \left( -dt \right) =-\int _{ 2a }^{ 0 }{ f\left( 2a-t \right) } dt\\ =\int _{ 0 }^{ 2a }{ f\left( 2a-t \right) } dt\qquad \left[ \because \int _{ a }^{ b }{ f\left( x \right) } dx=-\int _{ b }^{ a }{ f\left( x \right) } dx \right] \\ =\int _{ 0 }^{ 2a }{ f\left( 2a-x \right) } dx\qquad \left[ \because \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ b }{ f\left( t \right) } dt \right] \\ Hence,\quad \int _{ 0 }^{ 2a }{ f\left( x \right) } dx=\int _{ 0 }^{ 2a }{ f\left( 2a-x \right) } dx$

Example 5

Prove that $\displaystyle \int _{ 0 }^{ 2a }{ f\left( x \right) } dx=\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( 2a-x \right) } dx$

Solution: $\displaystyle Let\quad I=\int _{ 0 }^{ 2a }{ f\left( x \right) } dx\quad Then\\ I=\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ 2a }{ f\left( x \right) } dx\qquad \left[ \because \int _{ a }^{ b }{ f\left( x \right) } dx=\int _{ a }^{ c }{ f\left( x \right) } dx+\int _{ c }^{ b }{ f\left( x \right) } dx \right] \\ =\int _{ 0 }^{ a }{ f\left( x \right) } dx+{ I }_{ 1 }\quad where\quad { I }_{ 1 }=\int _{ 0 }^{ 2a }{ f\left( x \right) } dx$

Put 2a-t =x, so that dx=-dt. Also x=a, t=a and x=2a, t=0 $\displaystyle \therefore { I }_{ 1 }=\int _{ a }^{ 2a }{ f\left( x \right) } dx=\int _{ a }^{ 0 }{ f\left( 2a-t \right) } \left( -dt \right) =-\int _{ a }^{ 0 }{ f\left( 2a-t \right) } dt\\ =\int _{ 0 }^{ a }{ f\left( 2a-t \right) } dt=\int _{ 0 }^{ a }{ f\left( 2a-x \right) } dx\\ \therefore I=\int _{ 0 }^{ a }{ f\left( x \right) } dx+\int _{ 0 }^{ a }{ f\left( 2a-x \right) } dx$

Example 6 $\displaystyle \int _{ -\frac { \pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left| \sin { x } \right| } dx$

Solution: $\displaystyle Let\quad f\left( x \right) =\left| \sin { x } \right| \\ Then\quad f\left( -x \right) =\left| \sin { \left( -x \right) } \right| \\ =\left| -\sin { x } \right| \\ =\left| \sin { x } \right| =f\left( x \right)$ So, f(x) is an even function. $\displaystyle \therefore \int _{ -\frac { \pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ \left| \sin { x } \right| } dx\\ =2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left| \sin { x } \right| } dx=2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left| \sin { x } \right| } dx\qquad \left[ \because \sin { x } \ge 0\quad for\quad 0\le x\le \frac { \pi }{ 2 } \right] \\ =2{ \left[ -\cos { x } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }\\ =2\left( -\cos { \frac { \pi }{ 2 } } +\cos { 0 } \right) \\ =2$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.   