Inverse Function
If a function is one to one and onto from A to B, then function g which associates each element  to one and only one elementÂ
such that y=f(x) then g is called the inverse function of f, denoted by x=g(y)
Usually we denote g = f -1 {Read as f inverse } x=f -1(y)
Domain and Range of Inverse Functions
(1) If sin y=x, then y=sin -1 x,under certain conditionÂ
again and keeping in mind numerically smallest angles or real numbers.
These restrictions on the values of x and y provide us with the domain and range for the function y=sin -1 x,
Domain:Â
Range:Â
(2). Let cos y=x then y=cos -1 x under certain conditions
henceÂ
These restrictions on the values of x and y provide us the domain and range for the function y=cos -1 x
(3). If tan y= x then y=tan -1 x, under certain conditions. Here ,
Thus, domain x ε R
RangeÂ
(4). If cot y =x , then y=cot -1 x, under certain conditions. Here ,
These conditions on x and y make the function, cot y = x one-one and onto so that the inverse function exists.
i.e. y= cot -1 x is meaningful
Thus, Domain: x ε R
Range: y ε (0,π)
(5). If sec y =x, then y=sec -1 x, under certain conditions. Here ,
Domain: x ε R
Range: y ε [0,π] -[π/2]
(6). If cosec y =x then y=cosec -1 x, where ,Â
domain x ε R
RangeÂ