Ucale

Differentiation of functions

 

Differentiation is the action of computing a derivative. The derivative of a function y = f(x) of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x. It is called the derivative of f with respect to x

Summary of results discussed so far at a glance

  1. \displaystyle \frac { d }{ dx } \left( { x }^{ n } \right) =n{ x }^{ n-1 }
  2. \displaystyle \frac { d }{ dx } \left( { e }^{ x } \right) ={ e }^{ x }
  3. \displaystyle \frac { d }{ dx } \left( { a }^{ x } \right) ={ a }^{ x }\log _{ e }{ a }
  4. \displaystyle \frac { d }{ dx } \left( \log _{ e }{ x } \right) =\frac { 1 }{ x }
  5. \displaystyle \frac { d }{ dx } \left( \log _{ a }{ x } \right) =\frac { 1 }{ x\log _{ e }{ a } }
  6. \displaystyle \frac { d }{ dx } \left( \sin { x } \right) =\cos { x }
  7. \displaystyle \frac { d }{ dx } \left( \cos { x } \right) =-\sin { x }
  8. \displaystyle \frac { d }{ dx } \left( \tan { x } \right) =\sec ^{ 2 }{ x }
  9. \displaystyle \frac { d }{ dx } \left( \cot { x } \right) =-{ cosec }^{ 2 }x
  10. \displaystyle \frac { d }{ dx } \left( \sec { x } \right) =\sec { x } \tan { x }
  11. \displaystyle \frac { d }{ dx } \left( cosec\quad x \right) =-cosec\quad x\quad \cot { x }
  12. \displaystyle \frac { d }{ dx } \left( \sin ^{ -1 }{ x } \right) =\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } }
  13. \displaystyle \frac { d }{ dx } \left( \cos ^{ -1 }{ x } \right) =-\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } }
  14. \displaystyle \frac { d }{ dx } \left( \tan ^{ -1 }{ x } \right) =\frac { 1 }{ 1+{ x }^{ 2 } }
  15. \displaystyle \frac { d }{ dx } \left( \cot ^{ -1 }{ x } \right) =-\frac { 1 }{ 1+{ x }^{ 2 } }
  16. \displaystyle \frac { d }{ dx } \left( \sec ^{ -1 }{ x } \right) =\frac { 1 }{ \left| x \right| \sqrt { { x }^{ 2 }-1 } }
  17. \displaystyle \frac { d }{ dx } \left( { cosec }^{ -1 }x \right) =-\frac { 1 }{ \left| x \right| \sqrt { { x }^{ 2 }-1 } }
April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.
Create a free account
By clicking Sign up I agree with the Ucale's Terms and Privacy Policy
OR

Learn to Think

top

Setup Menus in Admin Panel