Ucale

# Differentiation of a function w.r.t another function

So far we have discussed derivatives of one variable, say y with respect to other variable, say , x . in this section we will discuss derivative of a function with respect to another function.LetÂ $\displaystyle u=f\left( x \right)and\quad v=g\left( x \right)$ be two functions of x. Then to find the derivative of f(x) w.r.t. g(x) i.e., to findÂ $\displaystyle \frac { du }{ dv }$ we use the following formula

$\displaystyle \frac { du }{ dv } =\frac { \frac { du }{ dx } }{ \frac { dv }{ dx } }Â$

Thus, to find the derivative of f(x) w.r.t. g(x) we differentiateÂ  both w.r.t. x and then divide the derivative of f(x) w.r.t. x by the derivative of g(x) w.r.t. x.

### Example

DifferentiateÂ $\displaystyle \log { \sin { x } w.r.t.\sqrt { \cos { x } } }Â$

Solution:

$\displaystyle u=\log { \sin { x } and\quad v=\sqrt { \cos { x } } } then\\ \frac { du }{ dx } =\cot { x } \quad and\quad \frac { dv }{ dx } =-\frac { \sin { x } }{ 2\sqrt { \cos { x } } } \\ \therefore \frac { du }{ dv } =\frac { \frac { du }{ dx } }{ \frac { dv }{ dx } } \\ =\frac { \cot { x } }{ -\frac { \sin { x } }{ 2\sqrt { \cos { x } } } } \\ =-2\sqrt { \cos { x } } .\cot { x } .cosec\quad x$

April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.