Ucale

# Continuity of a Function

when we say that the function f(x) is continuous at a point x=a, it means that at point (a, f(a)) the graph of the function has no holes or gaps. That is,its graph is unbroken at a point (a,f(a) )

A function f(x) is said to be continuous at x=a $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } =\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) = } f\left( a \right)$

(i.e.), L.H.L.= R.H.L. = value of a function at x=a

or $\displaystyle \lim _{ x\longrightarrow a }{ f\left( x \right) } =f\left( a \right)$

If f(x) is not continuous at x=a  we say that f(x) is discontinuous at x=a in any of the following cases:

1. $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } and\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) }$ exists but are not equal
2. $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } and\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) }$ exists and are equal but not equal to f(a)
3. f(a) is not defined
4. At least one of the limit does not exists

#### Graphical View

1. $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } and\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) }$ exists but are not equal $\displaystyle Here,\lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } ={ l }_{ 1 }\\ \lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) } ={ l }_{ 2 }\\ \therefore \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } \quad and\quad \lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) }$  exists but are not equal.Thus f(x) discontinuous at x=a It does not matter whether f(a) exists or not. #### Example $\displaystyle If\quad f\left( x \right)=\frac { \left| x \right| }{ x }$ .Discuss the continuity at $\displaystyle x\longrightarrow 0$ $\displaystyle Here\quad f\left( x \right) =\frac { \left| x \right| }{ x } \\ \therefore R.H.L.\quad at\quad x\longrightarrow 0\\ Let\quad x=0+h\\ i.e.\quad \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =\lim _{ x\longrightarrow { 0 } }{ f\left( 0+h \right) } =\lim _{ x\longrightarrow { 0 } }{ \frac { \left| 0+h \right| }{ 0+h } } =\lim _{ x\longrightarrow { 0 } }{ \frac { h }{ h } } =1\\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =1\\ again\quad L.H.L.\quad at\quad x\longrightarrow 0\\ let\quad x=0-h\\ i.e.\quad \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =\lim _{ x\longrightarrow { 0 } }{ f\left( 0-h \right) } =\lim _{ x\longrightarrow { 0 } }{ \frac { \left| 0-h \right| }{ 0-h } } =\lim _{ x\longrightarrow { 0 } }{ \frac { h }{ -h } } =-1\quad \\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =-1\\ \therefore \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } \neq \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } .\quad Thus\quad f\left( x \right)\quad is\quad discontinous\quad at\quad x\longrightarrow 0$

#### Graphically 2. $\displaystyle \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } \quad and\quad \lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) }$exists and are equal but equal to f(a) $\displaystyle Here\lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } =\lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) } =L$ f(a) is also defined but $\displaystyle f\left( a \right)\neq L$So again,limit of f(x) exists at x=aBut it is not continuous  at x=a #### Example $\displaystyle If\quad f\left( x \right) =2x+3\quad when\quad x<0\\ =0\quad when\quad x=0\\ ={ x }^{ 2 }+3\quad when\quad x>0$ Discuss the continuity

Solution: $\displaystyle If\quad f\left( x \right) =2x+3\quad when\quad x<0\\ =0\quad when\quad x=0\\ ={ x }^{ 2 }+3\quad when\quad x>0\\ \therefore R.H.L.\quad at\quad x=0,\quad \\ Let\quad x=0+h\\ i.e.\quad \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =\lim _{ h\longrightarrow { 0 } }{ f\left( 0+h \right) } =\lim _{ h\longrightarrow { 0 } }{ \left\{ { \left( 0+h \right) }^{ 2 }+3 \right\} } =3\\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =3\\ again,\quad L.H.L.\quad at\quad x=0\\ Let\quad x=0-h\\ i.e.\quad \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =\lim _{ h\longrightarrow { { 0 }^{ + } } }{ f\left( 0-h \right) } =\lim _{ h\longrightarrow { 0 } }{ \left\{ 2{ \left( 0+h \right) }+3 \right\} } =3\\ \Rightarrow \lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } =3\\ But\quad f\left( 0 \right) =0\\ \therefore \lim _{ x\longrightarrow { 0 }^{ + } }{ f\left( x \right) } =\lim _{ x\longrightarrow { 0 }^{ - } }{ f\left( x \right) } \neq f\left( 0 \right)$

3. f(a) is not defined
Here, $\displaystyle \lim _{ x\longrightarrow { a }^{ + } }{ f\left( x \right) } =L\quad and\quad \lim _{ x\longrightarrow { a }^{ - } }{ f\left( x \right) } =L$
But f(a) is not defined.So, f(x) is discontinuous at x=a #### Example

if $\displaystyle f\left( x \right) =\frac { { x }^{ 2 }-1 }{ x-1 }$ Discuss the continuity at $latexdisplaystylex\longrightarrow 1 &s=1$
Solution: $\displaystyle f\left( x \right) =\frac { { x }^{ 2 }-1 }{ x-1 } \\ \lim _{ x\longrightarrow 1 }{ f\left( x \right) } =\quad \lim _{ x\longrightarrow 1 }{ \frac { { x }^{ 2 }-1 }{ x-1 } } \\ =\frac { \left( x-1 \right) \left( x+1 \right) }{ \left( x-1 \right) } \\ =\lim _{ x\longrightarrow 1 }{ \left( x+1 \right) } \\ =2\\ But\quad f\left( 1 \right)=\frac { 0 }{ 0 } \quad \left( Indetermined\quad form \right) \\ \therefore f\left( 1 \right)\quad is\quad not\quad defined\quad at\quad x=1\\ Hence\quad f\left( x \right)\quad is\quad discontinuous\quad at\quad x=1$
Graphically:
Which shows $\displaystyle \lim _{ x\longrightarrow 1 }{ f\left( x \right) } =2$ but f(1) is not defined.
So f(x) is discontinuous at x=1 April 18, 2019
Which class you are presently in?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.   